If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying -6r2 + r + -1 = 0 Reorder the terms: -1 + r + -6r2 = 0 Solving -1 + r + -6r2 = 0 Solving for variable 'r'. Begin completing the square. Divide all terms by -6 the coefficient of the squared term: Divide each side by '-6'. 0.1666666667 + -0.1666666667r + r2 = 0 Move the constant term to the right: Add '-0.1666666667' to each side of the equation. 0.1666666667 + -0.1666666667r + -0.1666666667 + r2 = 0 + -0.1666666667 Reorder the terms: 0.1666666667 + -0.1666666667 + -0.1666666667r + r2 = 0 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + -0.1666666667r + r2 = 0 + -0.1666666667 -0.1666666667r + r2 = 0 + -0.1666666667 Combine like terms: 0 + -0.1666666667 = -0.1666666667 -0.1666666667r + r2 = -0.1666666667 The r term is r. Take half its coefficient (0.5). Square it (0.25) and add it to both sides. Add '0.25' to each side of the equation. -0.1666666667r + 0.25 + r2 = -0.1666666667 + 0.25 Reorder the terms: 0.25 + -0.1666666667r + r2 = -0.1666666667 + 0.25 Combine like terms: -0.1666666667 + 0.25 = 0.0833333333 0.25 + -0.1666666667r + r2 = 0.0833333333 Factor a perfect square on the left side: (r + 0.5)(r + 0.5) = 0.0833333333 Calculate the square root of the right side: 0.288675135 Break this problem into two subproblems by setting (r + 0.5) equal to 0.288675135 and -0.288675135.Subproblem 1
r + 0.5 = 0.288675135 Simplifying r + 0.5 = 0.288675135 Reorder the terms: 0.5 + r = 0.288675135 Solving 0.5 + r = 0.288675135 Solving for variable 'r'. Move all terms containing r to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + r = 0.288675135 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + r = 0.288675135 + -0.5 r = 0.288675135 + -0.5 Combine like terms: 0.288675135 + -0.5 = -0.211324865 r = -0.211324865 Simplifying r = -0.211324865Subproblem 2
r + 0.5 = -0.288675135 Simplifying r + 0.5 = -0.288675135 Reorder the terms: 0.5 + r = -0.288675135 Solving 0.5 + r = -0.288675135 Solving for variable 'r'. Move all terms containing r to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + r = -0.288675135 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + r = -0.288675135 + -0.5 r = -0.288675135 + -0.5 Combine like terms: -0.288675135 + -0.5 = -0.788675135 r = -0.788675135 Simplifying r = -0.788675135Solution
The solution to the problem is based on the solutions from the subproblems. r = {-0.211324865, -0.788675135}
| 2t(t+3)+4=0 | | -4-(-8)=m | | 4b^2-16b+16=0 | | 10(5+b)=130 | | 5w-12=8w+24 | | 7-10+3n=12 | | 1/8(3m-2)=1/4(m+5) | | 5x/6+11/4=17/3 | | n^3+6=6n^2+n | | 5t-3t=5-3(t-5) | | 2(T-3)+8T= | | c+7= | | 14(t-3)+7t=7(3t+3)-8 | | 3t^2-18t+27=0 | | 3(4+b)=36 | | 3(4+b)=45 | | m=-5-(-2) | | 1/5(2x-4)=4 | | -8-(-3)=m | | 8(12n-6)-5(9-m)+10= | | 2y-20+5y=16+3y | | (2x-4)=4 | | 3a^2-30a+75=0 | | 30*x/100=140000 | | 81c^4-g^4=0 | | -33-(-3)=x/6 | | -6x+10=4x-10 | | 2p+18+8p=25+3p | | y-47=49 | | 12a^2+36a+27=0 | | 2log(x)-log(4x)=3 | | 2/3+1/4g=-1/6 |